

PATIENT INFORMATION

1. General information

It is important to note that, despite progress made in development of materials and surgical management, and the undoubted percentage increase in optimal results, joint replacement devices still require continual monitoring, and their performance greatly depends on the patient's own personal characteristics like body weight, eating habits and physical exercise.

For further information it is recommended that you consult your own referring physician.

2. Materials

Biocompatible materials used for the manufacture of implant medical devices provide excellent resistance to corrosion and conform to the following international norms:

- stainless steel ISO 5832 -1 or ISO 5832-9
- titanium alloy [Ti6Al4V] ISO 5832 3
- cobalt-chrome-molybdenum alloy [CoCrMo] ISO 5832 4 or ISO 5832-12
- alumina ceramic ISO 6474
- ultra-high-molecular weight polyethylene ISO 5834 1 and ISO 5834-2
- unalloyed titanium, ISO 5832 2 standard, symbol: Ti.

The full list of Adler Ortho® prosthesis components and the materials of which they are composed can be found on the website www.adlerortho.com on the same page on which this document appears.

3. Metal sensitivity

The patient is advised to inform his/her own referring physician of any suspected or confirmed sensitivity to the following materials:

- Nickel [Ni]
- Chrome [CoCrMo]

Other heavy metals

so that the most appropriate treatment can be recommended.

4. Use of diagnostic apparatus

As set out in paragraph 2, materials for the manufacture of Adler Ortho prostheses comply with current standards.

In any event, it is advisable to inform the radiologist that you have a prosthesis, so that any possible contraindications or effects on medical tests can be verified.

It will be the responsibility of the facility that will perform the possible MRI examination to verify possible contraindications or the effects that the constituent materials of the DM may have on the examination.

5. Possible Complications, Side-effects

Apart from possible per-operation complications, a prosthetic implant can also be subject to:

- Peri-prosthetic infection with or without loosening
- Movement of one or several prosthetic elements due to mechanical overloading, osteoporosis, etc.
- Dislocation or bone fracture due to traumatism
- Extra-articulatory pathology: phlebothrombosis, pulmonary embolism, etc.
- fatigue fracture of prosthetic components can occur as a result of : trauma, strenuous activity, improper alignment or duration of service.

6. Contra-indications

Contra-indications may be relative or absolute.

The articular problems must be evaluated case by case, taking into account alternative surgical options (osteosynthesis, excision of radial epiphysis, amputation, et.).

The following examples are regarded as contra-indications:

- infection, septicaemia, and osteomyelitis constitute cases of absolute contraindication;
- serious metabolic, cardiovascular, respiratory or neurological pathologies;
- serious osteoporosis;
- rapid disease progression as manifested by joint destruction or bone absorption apparent on roentgenogram;
- neurogenic arthropathy (Charcot joint);
- skeletally immature patients;
- female patients of childbearing age, for whom a negative pregnancy test is not obtained;
- high patient activity which could lead to overloading of the implant.

7. Expected useful life of the device

The expected useful life of the device is a parameter subject to several factors. Below is the most important distinction, depending on the type of use of the prosthesis:

- Primary prostheses: it is possible, through registry data such as RIPOⁱ, to estimate the useful life of the device in 90% of cases at 10 years.
- Non-primary prostheses (revision, "limb salvage", "rare indications"): the parameters influencing the useful life of the device are many and are mainly attributable to the characteristics of the patient.

In all cases, the patient is advised to consult the treating physician, who is aware of the patient's condition and can reasonably estimate the expected useful life of the device.

Please refer to the following link for the material of the prosthesis: MATERIALS

To find out the analytical composition of the constituent materials of the plants refer to the following:

Doc IP00001 Rev. 4 - 04/01/2024

https://ripo.cineca.it/authzssl/Reports.html

Material	Specifications
Stainless Steel M30NW	ISO 5832-9

 ${\bf Table~1-Chemical~composition}$

Element	Mass fraction %		
Carbon	0,08 maximum		
Silicon	0,75 maximum		
Manganese	2,00 to 4,25		
Nickel	9,0 to 11,0		
Chromium	19,5 to 22,0		
Molybdenum	2,0 to 3,0		
Niobium	0,25 to 0,80		
Sulfur	0,01 maximum		
Phosphorus	0,025 maximum		
Copper	0,25 maximum		
Nitrogen	0,25 to 0,50		
Iron	Balance		
Residuals	_		
Each	0,1 maximum		
Total	0,4 maximum		

Material	Specifications
Inox Steel AISI 316L	ISO 5932-1

Table 1 — Chemical Composition

Element	Mass fraction %		
Carbon	0,030 max.		
Silicon	1,0 max.		
Manganese	2,0 max.		
Phosphorus	0,025 max.		
Sulfur	0,010 max.		
Nitrogen	0,10 max.		
Chromium	17,0 to 19,0 max		
Molybdenum	2,25 to 3,0		
Nickel	13,0 to 15,0		
Copper	0,50 max.		
Iron	Balance		

Material	Specifications
Alumina Ceramics	ISO 6474-1 and ISO 6474-2

Table 1 — Limits for material properties

B	TT. 11	Property	Requir	ement	6-1-1	D. C
Property	Unit	category	Type A	Туре В	Subclause	References
Average bulk density	kg/m ³ × 10 ³	1	≥ 3,94	≥ 3,90	6.1	ISO 18754
Average bulk density	kg/III° × 10°		2 3,74	2 3,50	0.1	EN 623-2
Chemical composition:						
Basic material, Al ₂ O ₃	% mass frac- tion	1	≥ 99,7	≥ 99,5		
Sintering additive, MgO	% mass frac- tion	1	≤ 0,2	≤ 0,2	6.2	ISO 12677 EN 725-1
Limits of impurities, total amount of SiO ₂ + CaO + Na ₂ O	% mass frac- tion	1	≤ 0,1	≤ 0,3		
Microstructure:			V	ů.		Ĭ
Linear intercept grain size	μm	1	≤ 2,5	≤ 3,5	6.3	ISO 13383-1 ASTM E112 EN 623-3
Relative standard de- viation linear intercept grain size	%	1	≤ 25	≤ 25		
Material strength; alternatives 1) or 2):					6.4	×
1a) Mean biaxial flexural strength	MPa	1	≥ 300	≥ 150	6.4.2	ASTM C1499
1b) Weibull modulus	-	1	≥8	≥8	6.4.4	ISO 20501 EN 843-5 ASTM C1239
2a) Mean 4-point flexural strength	MPa	1	≥ 500	≥ 250	6.4.3	ISO 14704 EN 843-1 ASTM C1161
2b) Weibull modulus	·—	1	≥8	≥8	6.4.4	ISO 20501 EN 843-5 ASTM C1239
Young's modulus	GPa	2	≥ 380	≥ 370	6.5	ISO 17561 EN 843-2 ASTM C1331 ASTM C1198 ASTM C1259
Fracture toughness, alternatives 1) to 3)			·	,	6.6	
1) SEVNB	MPa √m	2	≥ 2,5	n.a.	6.6.2	ISO 23146 CEN/TS 14425-5
2) SEPB	MPa √m	2	≥ 2,5	n.a.	6.6.3	ISO 15732
3) SCF	MPa √m	2	≥ 2,5	n.a.	6.6.4	ISO 18756 ASTM C1421

Table 1 (continued)

Property Hardness, Vickers HV1	Unit	Property	Requirement		Subclause	Defenen	
	Onit	category	Type A	Type B	Subclause	References	
	GPa	2	≥ 18	≥ 17	<u>6.7</u>	ISO 14705 EN 843-4 ASTM C1327	
Wear		2	Info	n.a.	6.8	e.g. ISO 14242-1	
Cyclic fatigue: 10 million cycles endur- ance limit strength in 4-point bending	MPa	2	No fail- ure at 200 MPa	n.a.	<u>6.9</u>	ISO 22214	

Table 1 — Limits for material property category 1

Property	Unit	Property	Requir	ement	Subclause	References
		category	Type X	Type S		
Average relative bulk density	%	1	≥99	≥99	<u>6.1</u>	ISO 18754 EN 623 - 2
Chemical composition:						
Alumina, Al ₂ O ₃	% mass fraction	1	60 to 90	60 to 90		
Zirconia, ZrO ₂ + HfO ₂	% mass fraction	1	10 to 30	10 to 30		
Amount of HfO ₂ in ZrO ₂	% mass fraction	1	≤5	≤5	<u>6.2</u>	ISO 12677
Intended additives	% mass fraction	1	≤10	≤10		
Total amount of impurities	% mass fraction	1	≤0,2	≤0,2		
Microstructure:						
Alumina linear intercept grain size	μm	1	≤1,5	≤1,5		ISO 13383-1
Relative standard deviation alumina linear intercept grain size	%	1	≤25	≤25	(2)	
Zirconia linear intercept grain size	μm	1	≤0,6	≤0,6	<u>6.3</u>	EN 623-3
Relative standard deviation zirconia linear intercept grain size	%	1	≤40	≤40		
Material strength; alternative 1) or 2):					<u>6.4</u>	
1 a) Mean biaxial flexural strength	MPa	1	≥600	≥450	6,4,2	ASTM C1499
1 b) Weibull modulus		1	≥8	≥8	6.4.4	ISO 20501 EN 843 - 5 ASTM C1239
2 a) Mean 4-point flexural strength	МРа	1	≥1 000	≥750	6,4,3	ISO 14704 EN 843•1 ASTM C1161
2 b) Weibull modulus		1	≥8	≥8	6.4.4	ISO 20501 EN 843-5 ASTM C1239

Table 2 — Limits for material property category 2 $\,$

		Property	Requir	ement	Subclause	References
		category	Type X	Type S		
Radioactivity (measured on raw materi- als)						
Zirconia Other intended additives	Bq/kg	2 See <u>6.5</u>	≤200	≤200	<u>6,5</u>	ISO 13356
Fracture toughness, alternatives 1) to 3)					<u>6.6</u>	
1) SEVNB	MPa √m	2	≥4,0	≥3,5	6.6.2	ISO 23146 CEN/TS 14425-5
2) SEPB	MPa \sqrt{m}	2	≥4,0	≥3,5	6.6.3	ISO 15732
3) SCF	MPa √m	2	≥4,0	≥3,5	6.6.4	ISO 18756 ASTM C1421
Hardness, Vickers HV1	GPa	2	≥16,0	≥15,5	<u>6.7</u>	ISO 14705 EN 843-4 ASTM C1327
Young's modulus	GPa	2	≥320	≥320	<u>6.8</u>	ISO 17561 EN 843-2 ASTM C1331 ASTM C1198 ASTM C1259
Cyclic fatigue: Cyclic loading in 4-point bending, 10 ⁷ cycles		2	No failure at 400 MPa	No failure at 300 MPa	<u>6.9</u>	ISO 22214
Accelerated ageing: 10 h in autoclave (0,2 MPa, 134 °C) after autoclaving:					6.10	
Strength		2	Degradation comparist before autoconformity ues given	on to value claving and y with val-	6.10.2	See <u>6.4</u>
Cyclic loading in 4-point bending, 10 ⁷ cycles		2	No failure at 320 MPa	No fail- ure at 240 MPa	6.10.3	See <u>6,9</u>
Wear		2	Increase in comparis before au	on to value	<u>6,10,4</u>	ISO 14242-1 ISO 14243-1 or other tests

Material	Specifications
PMMA (Polymethyl Methacrylate)	ISO 5833

Table 1 — Requirements and test methods for setting properties of liquid-powder mixtures

		Doughing time		Setting time		Maximum temperature			
Mixture	Average	Maximum deviation from average	Test method	Average	Test method	Average	Maximum deviation from average	Test method	
	min	min		min		°C	°C		
Syringe usage (see clause 5)	S <u></u> 2)) (9 1)	-	6,5 to 15	Annex C	90	± 5	Annex C	
Dough state usage (see 6.1)	≤ 5	1,5	Annex B	3 to 15	Annex C	90	± 5	Annex C	

Table 2 — Requirements and test methods for set and polymerized cement

Average compressive strength		Bending modulus		Bendin	ng strength
	Test method		Test method		Test method
MPa	2	MPa		MPa	
≥ 70	Annex E	≥ 1 800	Annex F	≥ 50	Annex F

Material	Specifications
CoCrMo Alloy	ISO 5832-4 and ISO 5832-12

COLED

Table 1 — Chemical composition

Element	Compositional limits % (m/m)
Chromium	26,5 to 30,0
Molybdenum	4,5 to 7,0
Nickel	1,0 max,
Iron	1,0 max.
Carbon	0,35 max.
Manganese	1,0 max.
Silicon	1,0 max.
Cobalt	Balance

FORGED

Table 1 — Chemical composition

	Mass fraction %		
Element	Alloy 1	Alloy 2	
	Low carbon	High carbon	
Chromium	26,0 to 30,0	26,0 to 30,0	
Molybdenum	5,0 to 7,0	5,0 to 7,0	
Iron ISO Store	Gorder: OP-36 0.75 maximum d: 2019-04-15 0,75 maximum		

Single user licence only, copying and networking prohibited.

	Mass fraction		
Element	Alloy 1 Low carbon	Alloy 2	
		High carbon	
Manganese	1,0 maximum	1,0 maximum	
Silicon	1,0 maximum 1,0 maximum		
Carbon	0,14 maximum	0,15 to 0,35	
Nickel	1,0 maximum	1,0 maximum	
Nitrogen	0,25 maximum 0,25 maximum		
Cobalt	Balance Balance		

Material	Specifications
UHMWPE (Ultra High Molecular	ISO 5834-1 and ISO 5834-2
Weight Polyethylene)	

Table 2 — Maximum ash and trace element content

Element	Maximum quantity permitted mg/kg			Test method according	
	Type 1	Туре 2	Type 3a	to subclause	
Ash	125	125	300	8.3	
Titanium	40	40	150	8.4	
Calcium	5	5	50	8.4	
Chlorine	30	30	90	8.4	
Aluminium	20	20	100	8.4	

Type 3 polymer is no longer manufactured. However, in order to cover existing supplies held in stockpile, this Type 3 material is retained in this document until the next revision.

Material	Specifications
Ti6Al4V Alloy	ISO 5832-3

Table 1 — Chemical composition

Element	Compositional limits % (m/m)	
Aluminium	5,5 to 6,75	
Vanadium	3,5 to 4,5	
Iron	0,3 max.	
Oxygen	0,2 max.	
Carbon	0,08 max.	
Nitrogen	0,05 max.	
Hydrogen	0,015 max. ¹⁾	
Titanium	Balance	
Except for billets, for which the maximum hydrogen content		

 Except for billets, for which the maximum hydrogen content shall be 0,010 % (m/m).

Material	Specifications
Unalloyed Titanium	ISO 5832-2

Table 1 — Chemical composition

Element	Maximum compositional limits				
	percent mass fraction				
	Grade 1 ELI Grade 1 Grade 2 Grade 3 Grades 4A and 4B				
Nitrogen	0,012	0,03	0,03	0,05	0,05
Carbon	0,03	0,08	0,08	0,08	0,08
Hydrogen	0,012 5a	0,012 5a	0,012 5a	0,012 5a	0,012 5a
Iron	0,10	0,20	0,30	0,30	0,50
Oxygen	0,10	0,18	0,25	0,35	0,40
Titanium	Balance	Balance	Balance	Balance	Balance

Except for billets, for which the maximum hydrogen content shall be 0,010 0 % (mass fraction) and for flat products for which the maximum hydrogen content shall be 0,015 % (mass fraction).